263 research outputs found

    The Edge supersonic transport

    Get PDF
    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars)

    Early outcomes of percutaneous pulmonary valve implantation using the Edwards SAPIEN XT transcatheter heart valve system

    Get PDF
    BACKGROUND: Patients with congenital or acquired heart defects affecting the pulmonary valve and right ventricular outflow tract (RVOT) commonly require multiple surgical interventions, resulting in significant morbidity. A less invasive alternative is percutaneous pulmonary valve implantation (PPVI). Though studies have previously reported the safety and efficacy of the early generation transcatheter heart valves (THVs), data on more recent devices are severely lacking. METHODS AND RESULTS: We performed a multinational, multicentre, retrospective, observational registry analysis of patients who underwent PPVI using the Edwards SAPIEN XT THV. Of the 46 patients that were enrolled, the majority had tetralogy of Fallot as the underlying diagnosis (58.7%), and stentless xenograft as the most common RVOT anatomy (34.8%). Procedural success rate was high (93.5%), with a low frequency of periprocedural complications and adverse events (6.5% and 10.9%, respectively). At 30days post-procedure, NYHA class had improved significantly (90.6% were at NYHA I or II). The rate of moderate/severe pulmonary regurgitation had decreased from 76.1% at baseline to 5.0% at 30days, and the calculated peak systolic gradient had decreased from 45.2 (SD±21.3) mmHg to 16.4 (SD±8.0) mmHg, with these values remaining low up to 2years. CONCLUSIONS: The data suggest the efficacy and safety of the SAPIEN XT THV in PPVI in common anatomies in patients with conduits, as well as those with native pulmonary valves or transannular patches. Continued data collection is necessary to verify long-term findings

    Prevalence of transcription promoters within archaeal operons and coding sequences

    Get PDF
    Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of ∼64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein–DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3′ ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes—events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements

    Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells

    Get PDF
    Many conventional biochemical assays are performed using populations of cells to determine their quantitative biomolecular profiles. However, population averages do not reflect actual physiological processes in individual cells, which occur either on short time scales or nonsynchronously. Therefore, accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. Microfluidic chips with arrays of microwells were developed for single-cell chemical lysis in the present study. The cellular occupancy in 30-μm-diameter microwells (91.45%) was higher than that in 20-μm-diameter microwells (83.19%) at an injection flow rate of 2.8 μL/min. However, most of the occupied 20-μm-diameter microwells contained individual cells. The results of chemical lysis experiments at the single-cell level indicate that cell membranes were gradually lysed as the lysis buffer was injected; they were fully lysed after 12 s. Single-cell chemical lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis

    Hippocampal and cortical mechanisms at retrieval explain variability in episodic remembering in older adults

    Get PDF
    Age-related episodic memory decline is characterized by striking heterogeneity across individuals. Hippocampal pattern completion is a fundamental process supporting episodic memory. Yet, the degree to which this mechanism is impaired with age, and contributes to variability in episodic memory, remains unclear. We combine univariate and multivariate analyses of fMRI data from a large cohort of cognitively normal older adults (N=100) to measure hippocampal activity and cortical reinstatement during retrieval of trial-unique associations. Trial-wise analyses revealed that (a) hippocampal activity scaled with reinstatement strength, (b) cortical reinstatement partially mediated the relationship between hippocampal activity and associative retrieval, (c) older age weakened cortical reinstatement and its relationship to memory behaviour. Moreover, individual differences in the strength of hippocampal activity and cortical reinstatement explained unique variance in performance across multiple assays of episodic memory. These results indicate that fMRI indices of hippocampal pattern completion explain within-and across-individual memory variability in older adults

    A proteomics sample metadata representation for multiomics integration and big data analysis

    Get PDF
    The amount of public proteomics data is rapidly increasing but there is no standardized format to describe the sample metadata and their relationship with the dataset files in a way that fully supports their understanding or reanalysis. Here we propose to develop the transcriptomics data format MAGE-TAB into a standard representation for proteomics sample metadata. We implement MAGE-TAB-Proteomics in a crowdsourcing project to manually curate over 200 public datasets. We also describe tools and libraries to validate and submit sample metadata-related information to the PRIDE repository. We expect that these developments will improve the reproducibility and facilitate the reanalysis and integration of public proteomics datasets.publishedVersio
    corecore